Nonsymmetric Preconditioning for Conjugate Gradient and Steepest Descent Methods1

نویسندگان

  • Henricus Bouwmeester
  • Andrew Dougherty
  • Andrew V. Knyazev
چکیده

We numerically analyze the possibility of turning off postsmoothing (relaxation) in geometric multigrid when used as a preconditioner in conjugate gradient linear and eigenvalue solvers for the 3D Laplacian. The geometric Semicoarsening Multigrid (SMG) method is provided by the hypre parallel software package. We solve linear systems using two variants (standard and flexible) of the preconditioned conjugate gradient (PCG) and preconditioned steepest descent (PSD) methods. The eigenvalue problems are solved using the locally optimal block preconditioned conjugate gradient (LOBPCG) method available in hypre through BLOPEX software. We observe that turning off the post-smoothing in SMG dramatically slows down the standard PCG-SMG. For flexible PCG and LOBPCG, our numerical results show that post-smoothing can be avoided, resulting in overall acceleration, due to the high costs of smoothing and relatively insignificant decrease in convergence speed. We numerically demonstrate for linear systems that PSD-SMG and flexible PCG-SMG converge similarly if SMG post-smoothing is off. We experimentally show that the effect of acceleration is independent of memory interconnection. A theoretical justification is provided.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new Levenberg-Marquardt approach based on Conjugate gradient structure for solving absolute value equations

In this paper, we present a new approach for solving absolute value equation (AVE) whichuse Levenberg-Marquardt method with conjugate subgradient structure. In conjugate subgradientmethods the new direction obtain by combining steepest descent direction and the previous di-rection which may not lead to good numerical results. Therefore, we replace the steepest descentdir...

متن کامل

Steepest Descent Preconditioning for Nonlinear GMRES Optimization

Steepest descent preconditioning is considered for the recently proposed nonlinear generalized minimal residual (N-GMRES) optimization algorithm for unconstrained nonlinear optimization. Two steepest descent preconditioning variants are proposed. The first employs a line search, while the second employs a predefined small step. A simple global convergence proof is provided for the NGMRES optimi...

متن کامل

Nonsymmetric multigrid preconditioning for conjugate gradient methods

We numerically analyze the possibility of turning off post-smoothing (relaxation) in geometric multigrid used as a preconditioner in conjugate gradient linear and eigenvalue solvers for the 3D Laplacian. The geometric Semicoarsening Multigrid (SMG) method is provided by the hypre parallel software package. We solve linear systems using two variants (standard and flexible) of the preconditioned ...

متن کامل

Steepest Descent and Conjugate Gradient Methods with Variable Preconditioning

We analyze the conjugate gradient (CG) method with variable preconditioning for solving a linear system with a real symmetric positive definite (SPD) matrix of coefficients A. We assume that the preconditioner is SPD on each step, and that the condition number of the preconditioned system matrix is bounded above by a constant independent of the step number. We show that the CG method with varia...

متن کامل

On preconditioned eigensolvers and Invert-Lanczos processes

This paper deals with the convergence analysis of various preconditioned iterations to compute the smallest eigenvalue of a discretized self-adjoint and elliptic partial differential operator. For these eigenproblems several preconditioned iterative solvers are known, but unfortunately, the convergence theory for some of these solvers is not very well understood. The aim is to show that precond...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015